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SUMMARY

Various self-consistent analyses have been proposed and used to

approximately evaluate the elastic stiffness and elastic-plastic behavior of metal

matrix composites. Such analyses have generally relied on very simple theoretical

models for the matrix inelastic stress-strain response. This was perhaps substantiated

on the basis of a lack of combined stress state experiments. Recent biaxial loading

experiments conducted by Dvorak and Bahei-EI-Din on unidirectional, fiber-

reinforced Boron-Aluminum resulted in the apparent inapplicability of prior self-

consistent approaches based on (i) the measurement of "flats" on the composite yield

surface and (ii) nonnormality of the plastic strain increment with respect to the yield

surface. Dvorak and Bahei-El-Din (1987) introduced a new theory, the so-called

Bimodal Theory of Fibrous Composites, in response to these apparent deficiencies.

Weng (1988) successfully approximated the inelastic behavior of spherical

particle-reinforced composites utilizing a modified self-consistent model called the

equivalent inclusion-average stress (EIAS) method. Noting the overly stiff response

of the basic EIAS model, he developed the "secant modulus" method to correct for

the overconstraining power of the matrix.

The purpose of this thesis is to reexamine the problem in the context of more

vii



sophisticated nonlinear kinematic hardening rules for the matrix. An EIAS method

which incorporates a tangent stiffness formulation based on incremental plasticity is

proposed. It is shown that this method is comparable to Weng's secant modulus

method. A 8 parameter and x function are proposed to correct for the constraining

power of the matrix due to eigenstrain accumulation and anisotropy due to fiber

reinforcement. The proposed EIAS method-tangent stiffness formulation with the

B parameter and X function produces satisfactory results when compared to existing

experimental data for the Boron-Aluminum system.
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CHAPTER I

INTRODUCTION

Metal matrix composites (MMCs) represent an important component of

today's materials technology. With their ductile matrices and high-strength fibers,

* MMCs offer high strength/weight ratios, superior resistance to corrosive

environments, and the potential for high-temperature applications. Therefore, in

spite of their high production costs and specialized fabrication techniques, designers
0

prefer MMCs over the more widely employed resin matrix composites (Pindera and

Lin, 1989) for many applications.

• In order to take full advantage of the many attractive features offered by

MMCs, it is necessary to understand and be able to accurately model their response

in the nonlinear range. While researchers have enjoyed reasonable success in

0 modeling the inelastic response of spherical particle-reinforced composites (Tandon

and Weng, 1984; Weng, 1988), the formulation of constitutive relations for continuous

fiber-reinforced composites has been frustrated by the lack of reasonably simple

solutions which would describe the fiber-matrix interaction and its effect on plastic

deformation. Progress has been made only in special cases where certain limitations

* are placed on the loading conditions or constituent materials (Dvorak and Bahei-El-



Din, 1982).

Experimental evidence indicates that the failure strain of the composite will

be of the same order of magnitude as that of the elastic fiber (approximately 0.009

for boron, for example) which signifies that the deformation of MMCs is limited to

the range of small strains. In this situation, plasticity analysis of MMCs is best

accomplished using the micromechanics approach, which not only produces the

effective response of the composite, but also provides an indication of the state of

stress in the composite's constituent phases. Micromechanical theories calculate the

overall response of the composite from the constituent properties and from their

mutual constraints which are given by microstructural geometry (Dvorak and Bahei-

El-Din, 1982).

Several different micromechanical approaches have been employed previously to

model the inelastic response of MMCs. These range from mixture theories for

unidirectional fiber-reinforced composites (c.f. Murakami and Hegemier, 1986) and

self-consistent schemes (c.f. Hill, 1965a; 1965b; 1965c) to finite element analyses of

a repeating unit cell (c.f. Dvorak, Roa, and Tarn, 1974). The most recent

developments in the constitutive theory of the nonlinear response of unidirectional

MMCs, based on the micromechanics approach, include the models proposed by

Dvorak and Bahei-El-Din (1982, 1987) and Aboudi (1986), among others (Teply and

Dvorak, 1985 and 1988).

Dvorak and Bahei-El-Din have made significant contributions to the plasticity
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analysis of fibrous composites. These contributions include micromechanical models

which derive the overall response from uniform local fields (averaging models), as

well as models which approximate the actual nonuniform local fields and arrive at

upper and lower bound solutions (bounding models) (Bahei-El-Din and Dvorak,

1989). Perhaps their most significant contribution in this area came as a result of

experiments performed on unidirectionally reinforced B/Al tubes in order to

characterize the elastic-plastic behavior of composites under combined stress states.

Based on their observations, they developed and proposed the "bimodal plasticity

theory of fibrous composites" (Dvorak, 1987). The bimodal theory deals primarily

with the determination of composite yield surfaces and in that respect may be

regarded as an application of classical incremental plasticity theory to heterogeneous

composites.

The bimodal theory submits that the elastic-plastic response of MMCs

reinforced by aligned, continuous fibers can be described in terms of two distinct

modes. In the matrix-dominated mode, the composite deforms primarily by plastic

slip in the matrix, on planes which are parallel to the fiber axis. In the fiber-

dominated mode, both phases deform together as a heterogeneous medium in the

elastic and plastic range. This theory admits two distinct overall deformation modes

which may exist in binary elastic-plastic fibrous composite systems under certain

loading conditions. To each mode there corresponds a segment of the composite

yield surface which reflects the onset of yielding of the matrix phase in that particular

3



mode, the envelope of these two segments comprises the composite yield surface.

They derived constitutive equations for the matrix-dominated mode of deformation

while the response of the fiber-dominated mode of deformation is approximated by

a self-consistent model. The two deformation modes give different branches of the

composite yield surface which identify the state of stress that activates a particular

mode, and indicate the conditions for mode transition in a given composite system.

The matrix-dominated mode is found to exist in systems reinforced by fibers of high

longitudinal shear stiffness, such as boron. Systems reinforced with more compliant

fibers, such as graphite, appear to deform exclusively in the fiber-dominated mode

(Dvorak and Bahei-E-Din, 1987).

Dvorak and Bahei-EI-Din concede that some observed phenomena cannot be

fully explained by the theory and appear to violate some of the classical assumptions

of plasticity theory (eg. Drucker's hypothesis). For instance, they observed "flats" in

the composite yield surfaces and non-normality of the plastic strain rate vector to the

composite yield surface (Dvorak, 1987; Dvorak and Bahei-El-Din, 1988).

Another recent work which stimulated application of the Equivalent Inclusion-

Average Stress (EIAS) method in this thesis was that of Weng (1988). Weng's work

focussed on application to particle-reinforced composites, but the idea of relaxing

constraint in the EAS method during plastic flow is especially relevant to our analysis

of fibrous-reinforced composites.

In a two-phase composite containing spherical inclusions, two distinct modes

4



of plastic deformation may take place. The first one is that the matrix will remain

elastic, and the inclusions are the plastically deforming phase. The second one is that

the inclusions will remain elastic and the matrix is the plastically deforming one. As

the constraining power

imposed on the deformation of the inclusions is exercised by their surrounding matrix,

these two types of composites will exhibit different constraining effects. In the former

case, as the matrix remains elastic, its constraint power will remain constant and be

may aptly represented by its elastic stiffness tensor. Weng terms this type of

composite, with plastically deforming inclusions, a composite of the first kind. In the

second case, the continuous plastic flow of the matrix phase will lead to a weakening

constraint power and, therefore, the equation describing the deformation of the

inclusions must incorporate such an effect. This type of composite, with the matrix

being the plastically deforming phase, is termed a composite of the second kind.

Since this thesis focuses on composites of the second kind, we will direct our

attention to Weng's treatment of the same.

Weng's methods for analyzing composite plasticity are based on Mori-Tanaka's

concept of average stress in the matrix, in conjunction with Eshelby's solution of an

ellipsoidal inclusion. Hence, an "interaction strain" is introduced in addition to

Eshelby's transformation strain to enhance description of inclusion interaction effects

at higher volume fractions. This method will heretofore be referred to as the

equivalent inclusion-average stress or EIAS method. Weng presents two solution

5



procedures for solving the problem of composite plasticity for composites of the

second kind. The first method is an EIAS method with elastic constraint. In this

method, plastic strain in the matrix is treated as a negative eigenstrain in the

comparison material. The comparison material has the same elastic moduli as the

matrix material and remains elastic throughout the solution procedure. This causes

40 an overconstraining effect, resulting in an overly stiff composite response in the

plastic regime (Weng, 1988).

Weng's second solution procedure is a novel EIAS method with a secant

moduli formulation. Since he intended to apply his theory for monotonic,

proportional loading, he employed the deformation theory of plasticity instead of an

* incremental theory to model behavior of the matrix. With a ductile matrix material,

there is decreasing constraining power of the matrix material as plastic flow increases.

To account for this decreasing constraint, Weng utilizes the "secant modulus"

approach to calculate the stiffness of the comparison material. The secant modulus

accounts for both plasticity and the weakening constraint power of the matrix;

* therefore, negative eigenstrains are not used to account for the plastic strain in the

matrix as with the original EIAS method with elastic constraint. However, C,

Eshelby's transformation strain, is still used to account for inclusion-matrix misfit

which is inherent in the EIAS approach. Weng notes that for spherical particle-

reinforced composites, this method produces much better results than the EIAS

method with elastic constraint (1988).

6



The purpose of this thesis is to develop a constitutive model which predicts the

overall response of the composite under quite generally incrementally applied

uniform macroscopic stresses or strains in terms of the constituent properties and the

geometry of the microstructure. Utilizing Weng's analysis of the composite of a

second kind as a starting point, we develop three material models for analyzing the

plasticity of fibrous composites. Each model represents a refinement of the previous

in order to achieve a better approximation of experimental data.

First, we provide a detailed development of the EIAS method with elastic

constraint. This model is nearly the same presented by Weng (1988), but we use the

Eshelby tensor of elasticity for circular, cylindrical fibers instead of the tensor for

spherical particle reinforcement. Also, we use an incremental plasticity theory instead

of the deformation plasticity theory to calculate the increment of plastic matrix strain.

This will allow us to subject our model to both proportional and nonproportional

loading histories, as well as to cyclic loading histories. The results with this type of

model as applied to fibrous composites coincide with Weng's results in essence. The

model performs well in the elastic regime but is overly stiff in the plastic regime

(Weng, 1988).

Secondly, we develop a model similar to Weng's EIAS secant modulus

formulation; however, instead of using the secant modulus to account for the

weakening constraint power of the matrix, we introduce a tangent stiffness method.

This method uses the instantaneous value of the matrix plastic hardening modulus to

7



estimate the instantaneous tangent stiffness of the comparison material in the EIAS

approach. Our use of an incremental plasticity theory to compute the increment of

* plastic matrix strain instead of the deformation theory of plasticity used by Weng

motivates the introduction of the tangent stiffness approach. We call this model the

EIAS Method-Tangent Stiffness Formulation. We also applied this method to

spherical particle-reinforced composites and compared our results to those of Weng's

using his secant moduli approach. Our results are comparable to Weng's, but we feel

that our model more closely approximates experimental data, especially at lower fiber

volume fractions.

Thirdly, in light of the unsatisfactory results achieved with the above two

* models for unidirectional composites, we propose a theoretically-based modification

of the constraint power in the EIAS formulation which, when used in combination

with the EIAS method-tangent stiffness formulation, produces satisfactory predictions

for the inelastic behavior of unidirectional, continuous fiber-reinforced composites.

Finally, keeping in mind the experimental observations of Dvorak and Bahei-

* El-Din regarding violation of normality for B/Al continuous fiber-reinforced

composites, we offer some explanations, based on our theoretical investigation.

These studies lead us to conclude that a micromechanically-based theory is essential

for describing the elastic-plastic behavior of important classes of fiber-reinforced

composites. Non-associativity is required for any phenomenological model, in

* general, owing to shear localization in the matrix near reinforcement interfaces in

8



addition to the strong tendency for the plastic strain rate in the matrix material to

rotate toward the direction perpendicular to reinforcement to relax constraint

development.

As a result of our investigations, we propose a composite material model

which enables fully incremental solutions based on an EIAS method with eigenstrain

relaxation as opposed to a purely rate form of the EIAS. Our original contributions

to the analysis of fibrous MMCs include the tangent stiffness formulation for

estimating the comparison matrix material in the EIAS method; the 8 parameter

which relaxes the constraint effect of the comparison material by reducing the rate

of eigenstrain accumulation; and the x function which allows the inelastic behavior

of the composite to transition to matrix- dominated behavior as the matrix plastic

strain rate vector rotates and aligns itself with the reinforcement direction.

9



CHAPTER H

EIAS METHOD WITH ELASTIC CONSTRAINT

2.1 Eigenstrain Terminology

An eigenstrain is a collective term given (Mura, 1987) to such nonelastic

strains as plastic strains and misfit strains. It is a "ficticious" quantity which defines

the level of misfit related to the applied loading level, mismatch of elastic constants

and matrix plastic strain. Eigenstress is a generic term given to self-equilibrated,

internal stresses caused by one or several of these eigenstrains in bodies which are

not subject to any externally applied body forces or surface tractions. Eigenstress

fields develop when eigenstrains are incompatible.

A finite subdomain n, with a prescribed eigenstrain eij*, in a homogeneous

material domain D with no prescribed eigenstrain is called an inclusion (see Figure

1). The elastic moduli of n and D are assumed to be the same when inclusions are

under consideration.

If n has different elastic moduli than D, then n is called an inhomogeneity.

In this situation, an applied stress is perturbed by the presence of the inhomogeneity,

and a stress perturbance field exists. An eigenstress field approximates the perturbed

stress field by considering a corresponding fictitious eigenstrain e.j* in n in a



homogeneous material.

2.2 Fundamental Equations of Elasticity with Eigenstrains

In this section, the equations of linear elasticity are reviewed with particular

reference to solving eigenstrain problems (Mura, 1987; Taya and Arsenault, 1989).

These problems consist of solving for the displacement ui, strain eij, and stress aij at

an any point x(x1 ,x2,x3) when a free body D is subjected to a given distribution of

eigenstrain ,j'. A body is free when there are no externally applied surface tractions

or body forces.

2.2.1 Hooke's Law

For infinitesimal deformations, the total strain eij is the sum of the elastic

strain ej and eigenstrain eij,

o + (2-1)

Hooke's Law relates the elastic strain to the stress o, by

aV = Cokiek = CkcM- e;) (2-2)

Cip, are the elastic moduli. In D-n where the e.*" are zero, equation (2-2) becomes

a = CUie N (2-3)

In this work, we will focus on isothermal behavior such that the eigenstrains are

11



2.2.2 Equilibrium Conditions

When calculating eigenstresses, the domain D must be assumed free of any

external force and surface constrai.-ts. If these conditions for D are not satisfied,

superposition of the eigenstress field of D on appropriate boundary value problem

can be used to construct the applied stress field.

The equilibrium equations are

=u = 0 (ij = 1,2,3) . (24)

The boundary conditions for free external surface tractions are

GUjfl = 0 , (2-S)

where ni is the exterior unit normal vector on the boundary of the domain D. In

most cases, D is considered an infinitely extended body and the boundary conditions

in (2-5) are replaced by aij(x) -- 0 as x --

2.3 Eshelby's Equivalent Inclusion Problem

As stated earlier, an inclusion is defined as a sub-domain fl in domain D,

where eigenstrain eij (x) is given in n and is zero in D-n. The elastic moduli in n and

D-n are assumed to be the same. The remaining domain D-n is referred to as the

matrix.

Eshelby devised a method to solve three-dimensional elasticity problems for

inclusions (or inhomogeneities) of ellipsoidal shape embedded in an infinite elastic

12



body or matrix. Consider first an inclusion problem where an ellipsoidal domain

(denoted by n) is subjected to uniform non-elastic strain (or eigenstrain) cij" (see

Figure 1). Such an inclusion embedded in an infinite elastic body with elastic moduli

CiikI causes stress fields within and outside the inclusion. Eshelby suggested a method

for obtaining the solution of the stress field within A (Eshelby, 1957) and outside A

(Eshelby, 1959). The procedure for obtaining the stress field outside fl is very

difficult, but that for the stress field inside n is simplified because it is uniform for a

given uniform eigenstrain eij . In the absence of applied loading, the perturbance

stress inside L due to misfit is given by Eshelby as

apt =.e (2-6)

where e Pt is the perturbance strain in nl and is related to the eigenstrain, Cmn*, by

--t S C;W (2-7)

From (2-6) and (2-7), it is clear that the perturbance stress inside the inclusion can

be readily calculated for a given eigenstrain, eij*.

Stjkl is the Eshelby tensor for the matrix material and is a function of the

geometry of the ellipsoidal inclusion and the matrix Poisson's ratio if the matrix is

isotropic. The e." are the uniform eigenstrains in the inclusion associated with the

misfit. Per Eshelby, uniformity of eigenstrains requires uniformity of the remotely

applied stresses. Sijkl is given in terms of the Green's function Gmnpq as

13



1 2z

SUN1 = " C ,f dC3 f{Gj,,C() + G,( )Wd (2-8)
-1 0

where the integration is performed over the unit sphere.

This form of Sijkl admits any form of anisotropy of the matrix, although the

Green's function must be available for the matrix. The above equation reduces to

I -CJG +~ (2-9)

The G's are presently available for isotropic and transversely isotropic matrices. For

other anisotropies, they may be determined numerically.

The integration for Sijkl is performed in a natural coordinate system which

defines the volume of an ellipsoidal inhomogeniety. For the case of circular,

cylindrical fibers, one axis of the ellipse goes to infinity while the other two are equal.

For a more detailed development of the Eshelby tensor, see Appendix A.

A practical and important application of Eshelby's equivalent inclusion method

is the case of an "inhomogeneity problem." When the elastic moduli of an ellipsoidal

inclusion differ from those of the surrounding matrix, the inclusion is called an

ellipsoidal inhomogeneity. Fibers and precipitates are examples of inhomogeneities.

An elastic material containing inhomogeneities is free from any stress field unless a

load is applied. On the other hand, a material containing inclusions is subjected to

a self-equilibrated, internal stress (eigenstress) field, even if it is free from all external

14



load is applied. On the other hand, a material containing inclusions is subjected to

a self-equilibrated, internal stress (eigenstress) field, even if it is free from all external

tractions. Eshelby first pointed out that the stress perturbance in an inclusion relative

to the applied stress due to the presence of an inhomogeneity can be simulated by

an eigenstress caused by an inclusion when the eigenstrain is chosen properly. This

eigenstress is called the perturbance stress, oipt, and the equivalency will be called the

equivalent inclusion method.

When a composite consisting of a matrix with stiffness tensor Cijk and a single

inhomogeneity with a stiffness tensor Cijk " is subjected to the uniform applied stress

a,, the actual (or total) stress field aijt in the inhomogeneity (see Figure 2(a)) is

given by

t 0cJ~+ -Ck(+Z (2.10)

where aipt and ekiPt are the stress and strain perturbances introduced by the existence

of the inhomogeniety, and ekl° is the strain of the matrix (without the inhomogeneity)

corresponding to oij° .

This inhomogeneity problem can be reduced to the inclusion problem insofar

as the disturbances of the stress and strain are concerned. In the equivalent inclusion

method, we must introduce an eigenstrain in fl in order to reproduce the effect of the

presence of the inclusion. The composite is treated as though it consists of pure

matrix material (elastic constants CjkI). There are no eigenstrains introduced in D-n.

15



Hence, in n, we have

'V V= C ~ j+ ea ) a c t u a l( 2 -1 1 )

0 =CV(+e "+ -e) equivalent inclusion problem

where ek' is the eigenstrain. Equation (2-11) is the governing equatiOn of misfit (see

Figure 2(b)) for a single inhomogeneity.

It is obvious from equations (2-10) and (2-11) that the perturbance stress in

the inclusion is given by equation (2-6). Then, the perturbance strain ekP' is related

* to the unknown eigenstrain e." by equation (2-7). The perturbance stress in fl is

ept - e(2412)

* Note that .ijpt - 0 and e P' -, 0 as axDj -- ,, such that aijpt is self-equilibrated, i.e.

oijjpt=O.

If the matrix has uniform plastic strain, eijP', then we may treat eijPm as a

negative eigenstrain, i.e.,

= + e (2-13)

In the context of the elastic Eshelby solution, the matrix plastic strain must be

enforced homogeneously in D and then treated as a negative eigenstrain in n (Weng,

* 1988; Mura, 1987). In metal-matrix composites for which the matrix is elastic-plastic

and the fibers are elastic, plastic strain occurs in the matrix. We must then modify

(2-11) as follows (Weng, 1988):
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e P = + + M e(2-14)

= C k4e + gkJ - C'kL)I

where it is understood that ekpm is the matrix plastic strain. The left side of (2.14)

represents the actual stress in the inclusion assuming the inclusion deforms

compatibly with the matrix plastic strain (i.e. ui+ =u1 ). The right side is the associated

equivalent inclusion problem. The perturbance strain in this case is

CP= - (2-15)

It is noted here that the equivalent inclusion problem employs the assumption

of elastic constraint of the matrix on the fiber which means that the problem treats

the matrix as if no plastic strain had occurred. This may be reasonable in the sense

that after plastic straining, misfit accommodation is by virtue of elastic unloading

processes, i.e. within the yield surface, at each successive increment of deformation.

Weng (1988) pointed out that this procedure overestimates the constraint power of

the matrix at significant levels of matrix plasticity.

2.4 Interaction of Inclusions

The development of the inhomogeneous inclusion problem was based on

Eshelby's equivalent inclusion concept for a single inclusion in an infinitely extended

matrix material. This approach needs to be modified when it is used to analyze

fibrous composite systems. In a fibrous composite, each fiber is an inclusion.
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Depending on the volume fraction, the fibers, or inclusions, tend to interact causing

additional stresses in n which augment the perturbance stress, ait. These additional

stresses are called interaction stresses, in general, and are represented by aij.

Strictly speaking, we cannot just assume for finite D that oijPtnj-o on the

boundary of D as is the case with a single inclusion in an infinite matrix. In general,

we may think of aiji as an image stress, analogous to image stresses due to finite

boundaries in dislocation mechanics, for example. Then, equation (2-14) becomes,

in n,

C; eON+'+"+t') = CU~O+CePe1°  eN A Ai ki 1 k (2.16)
=2 C4+eZa+4i-cH).

Here, eki and ok are regarded as an averaged image or interaction strain and stress,

respectively, over the complete volume. Then we must specify how e.' is to be

calculated.

2.4.1 The Mori-Tanaka Method

The Mori-Tanaka Method assumes that the inclusions are randomly

distributed. Then, per a rule of mixtures type formulation, in the absence of remote

applied loading,

f(a U)! + (I - o --0. (2-17)

Here, (oij)f a the average internal (self-equilibrated) stress perturbation in the
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inclusion;

(aij)m - the average internal (self-equilibrated) stress perturbation in the matrix;

and f - the volume fraction of inclusions.

The total stress inside an inclusion is

a ; Pr + (a) (2-18)

where

- + ec") (2419)

and

e'= sb.(C.- e). (2-20)

Here, aijpt is the stress corresponding to the infinite body solution, i.e. a single

inclusion in a matrix of infinite extent.

Since the inclusion can be placed anywhere in the matrix, the average internal

stress in an inclusion is

(a V}! = a + (o',) . (2-21)

Substituting for (aij)f in (2-17) and simplifying, we have

( + (a )') (1 - = 0

f a -(a (2-22)

or (a4 ) -p.
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Utilizing this result in combination with

J) = -(a V). + ) (2-23)

which was obtained by dividing through by f in (2-17), we have

(oM)a = (1 - f)oP. (2-24)

Let us define the average interaction stress, i.e.

a V (o0), (2-25)

Therefore, according to the Mori-Tanaka Method, the interaction (or image) stress

is

0 -...p(2-26)

2.4.2 The Image Stress Approach

Mura (1987) presents the concept of an image stress, aij, where the internal

stress is equal to the sum of the image stress and the perturbance stress, aijP', in n,

i.e.

I P (2-27)
IV = 0. + 01 (

Consider a finite material domain D in which are embedded n number of

ellipsoidal inclusions. Also, assume there exists some finite ellipsoidal domain, D,
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which encloses the inclusion, fn, and has dimensions on the order of the fiber spacing

(see Figure 3(a)). The domain, D', is of the same ellipsoidal character as n in terms

of orientation and shape (see Figure 3(b)). It can be shown that aijPt by itself (i.e.

a single inclusion in an infinite body) does not satisfy the traction boundary condition

'iptnj--o on 6D*. Hence, the image stress may be viewed as a corrective term to

satisfy equilibrium in D" and the traction boundary conditions on 6D', i.e.

a I = 0 in D*,Qj (2-28)
(o + $)l., = 0 on 8D.

Recall that aijjP'=0 from the equivalent inclusion problem. This ensures some

measure of consideration of the finite distance between fibers.

The average value of oil. over the volume D" can be shown to be

(a 1) = -1 f at~dV - - ,=.-~.f o V D = -- .-f' (2-29)

by Tanaka-Mori's Theorem (Mura, 1987). VD. is the volume of the domain D °, and

the integration is performed over the volume of the inclusion n.

For uniform eigenstrains in nl, aijp' is constant in n and hence

(I =p f"oPt

VD Q (2-30)

a !d

Here, n is the volume of the inhomegeneity, and n/VD. = f, the fiber volume
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fraction in D". In our analysis, we then assume that

= cr f.(2-31)

in both phases. Likewise, for strain,

(e- f = e " (2-32)

and

() = - - + (2-33)

where it is understood that the brackets refer to the average over the volume Do.

Utilizing this result and attributing to the bracketed quantities which follow the

* definition of average over the entire volume of the finite domain D, we are able to

determine an expression for the image stress in terms of the perturbance stress for

the entire composite. The image strain, eka', is related to the image stress, ain, by

e, C-1 (2-34)

From (2-19), (2-33), and oijl=-faijpt, we have

0

o -fao = CV4-f(e4 - eL + P)] (2-35)

The quantity in brackets on the right side of the equation is e.1 as can be seen from

(2-33). Note that we are now using f, the composite fiber volume fraction, instead

of f. Recognizing this and solving for cd', we have
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_l-fC ouZ. (2-36)

We can clearly see that (2-34) and (2-36) are both expressions for e. Equating the

right sides of these equations and multiplying both sides by Cijk1 , we see that

I -(2-37)

and therefore the average interaction strain in (2.33) is consistent with (2-30). One

notes that the above expression for the image stress is identical to that obtained by

the Moi-Tanaka method, which may be expected for a two-phase composite with

uniform eigenstrains and ellipsoidal inclusions as pointed out by Norris (1989).

2.5 Average Stress and Strain in the Composite

Stress-strain analysis usually requires some assumption about the relationship

of the applied stress to the actual stress in the composite. A usual approach is to

take the average of all the stresses over the entire volume of the composite, i.e.

VdV . (2-38)

Since the various stresses are assumed uniform in the EIAS approach, we have

(1 - a(o + ci) + f(o + a + o'). (2-39)

Hence, the average stress in the composite is equal to the matrix volume fraction

times the average matrix stress plus the fiber volume fraction times the average fiber
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stress. Simplifying (2-39), we have

- i

U Ua.0 + a + fao " (2-40)

In section 2.4, we showed that

= -fy'! (241)

Therefore,

G o* (2-42)

Hence, the applied stress, oaj°, is equal to the average stress. This should be

intuitively obvious based on the foundations of the EIAS approach.

Applying a similar volume averaging approach to determine the average strain

in the composite, we have

e = + (I-f)(e +e ) + (cee!.+e"). (243)

Therefore, the average strain in the composite is equal to the sum of the matrix

plastic strain (corresponding to a homogeneous stress-free deformation), the matrix

volume fraction times the average matrix strain, and the fiber volume fraction times

the average fiber strain. After simplification, we have

- PM 0 1rpeU~s'I +8~+ (2-44)

= (1 - f)c"' + +

Note that we have foregone any consideration of variational principles for
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defining the strain of the aggregate. These considerations are not essential when

dealing with a work-hardening matrix.

2.6 Final Form of the EIAS Method with Elastic Constraint

At this point we are ready to combine the concepts of the equivalent inclusion

problem with those of image and average stresses to produce the final constitutive

relationships for our model based on the treatment of matrix plastic strain as a

negative eigenstrain in the fiber.

For better description of finite fiber volume interaction effects, the image

stress is included on both sides of (2-14). Repeating (2-16), in n,

-C 4iJHkI + eio Id + e -Ie

The left side of (2-45) represents the actual stress in the fiber whereas the

right side represents the corresponding equivalent inclusion problem for the same

stress.

2.7 Rate Form of the EIAS Approach

We may consider the solution of the elastoplastic problem as the sum of the

solutions of a sequence of elastically constrained plastic deformations, subjecting each

increment to the equivalent inclusion solution.
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Adopting a rate form of equation (2-45), we have

C~ 0+ i t+ ip7 + i)

UAM+ 'k + 'HO+ I It

where

.Pt
= S-- (,(t: -10

•. 1 ( _ +. - (2.7)
I = -f(+(

and e4 = CHU .

The matrix plastic strain rate, iijPM, is given by the incremental elastoplastic flow rule

i"= 0 if F<O orF=O and F..<O,

ao MIV (2-48)

6~=~~k~4  if F =0 and -F** 0

Here, F :-the matrix yield function, and b&.' 0 IC + & i.' is the average matrix stress

rate. The unit normal vector to the yield surface is given by

aF O.F F 2 (2-49)
acv'm CO ' " I

The quantity h is the plastic hardening modulus of the matrix. Hence, we may restate

(248) as
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h 6 - fC"(i 0 - !'+ * 0

ifn67 kOandF=O, (2-50)

• w = 0 otherwise.

The quantity enclosed in brackets is the matrix stress rate, azjm. Appendix B outlines

the two incremental plasticity theories used to calculate the matrix plastic strain

increment in this thesis.

Substituting (2-47) into (2-46), we have

C ,C,,,o, + Sk,(e:, - +

- 4S~ (c;. - c) - 4+ ' =

-(2-51)

C-{C~.MGPA+ :- t + +HI L

In this equation, m) is the applied stress rate (or increment) and the unknowns are

ikl" and lip o .

2.8 Solution Procedure for the EIAS Method with Elastic Constraint

Equation (2-51) above is the governing equation for solution of the EIAS

problem with full elastic constraint. Since an incremental plasticity theory is used to

calculate the increment of matrix plastic strain, an incremental form of (2-51) is

adopted for solution of the problem. Equation (2-51) is rewritten for ease of
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programming as follows:

A, + B (2-52)

where the coefficient matrices n, Bijm, and Dijmn are

* -1 -1 -

A,, = ZWC;, - =C , kWc;J,

Bo, = -c;+s + fcsS + cs., - fcw ,
+ fC -c +c. - c

(1 - - ,,cUO,,.,) (2.53)

D, co, - f ,s., - C;,LJ + fc ,

-fC + f C - C,

(1 - f-&CU., - C.) - fCO-,

where &Cijmn = Cijmn" - Cijmn.

These matrices are calculated based on the material properties of the

particular composite system of interest, and they only have to be calculated once for

a given loading history. Therefore, the subroutine which performs these calculations

(called COEFMAT for material coefficients) is located outside the calculation "loop",

which significantly reduces calculation time.

The program was written for "load controlled" conditions as the applied stress

increment, Aoij*, is the input to the program. A separate program capable of

producing proportional as well as nonproportional loading histories was written to
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create the loading history input file.

As stated above, the two unknowns in the problem are the increment of

eigenstrain, A&ek , and the increment of matrix plastic strain, ,eaPm. The plastic strain

increment, &e p m is calculated based on the current stress state (and increment) using
[0

an incremental plasticity theory outlined in Appendix B. With Aaij and &Ek pm

known, &em - can be easily calculated by multiplying the left side of (2-52) by the

inverse of the coefficient matrix Dijmn (i.e., Dijmn'). Then, the complete state of stress

and strain for the composite and its constituents can be calculated for that particular

instant in the loading history. Updating of the stress and strain was accomplished in

the program by a subroutine called UPDATE. Once the update was performed and

values were written to a data file, the program reads the next applied stress

increment from the input file and the cycle continues until the loading history is

exhausted.

This program is particularly efficient in that no iteration is required. This is

accomplished as follows. From (2.50), we have the matrix flow rule

'7 -i.,O - fCL,,(',, - ',m + "n
* (2-54)

-) = (, Znk,)n,.

Taking the scalar product of both sides of (2-54) with n,,, we have

-- ,,~, - + )I,,. (2-55)

From the ELAS method, equation (2-52),
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A 6o + B ip = D , i (2-56)
0" M OwnMn Oan

Solving for i

= ~ B~c~')(2-57)• -1u .o + .. apm)

By substituting (2-57) into the flow rule, we may rewrite the plastic strain rate in (2-

54) explicitly in terms of the applied stress rate &i° as

in (2-58)

where

. =[6 n- ( Cn,, ,,, -C n)D €4 , O @ n(2-59)
[h+f C ,,$ ., -C D4qB , Anlunt + ,f ( CU, - Ck plat, .)n .nu

This noninterative form makes the program especially practical for application in

finite element type programs, for example. Readers are referred to Appendix C for

a flowchart of this program, called BALNIT (for Boron/ALuminum-No ITeration).
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CHAPTER Im

EIAS METHOD - TANGENT STIFFNESS FORMULATION

3.1 EIAS Method with a Tangent Stiffness Formulation

Based on his work with spherical inclusions in a plastically deforming matrix,

Weng (1988) concluded that the constraint power of the EIAS method with elastic

constraint renders it much too stiff in the elastic-plastic range. Weng introduced a

modified Eshelby formulation based on the secant modulus for the deformation

theory of plasticity in order to weaken the constraint power of the matrix in the EIAS

method. For incremental elasto-plasticity and general loading paths, we cannot use

the secant modulus approach directly. However, it is possible to construct an

analogous approximate Eshelby relation based on the tangent modulus. It is

important to emphasize that the ETAS method (Weng, 1988; Mura, 1987) based on

elastic constraint, which treats plastic strain as an eigenstrain, is not generally

applicable to significant matrix inelastic deformation of reinforced materials. Even

though the method may be applied unambiguously to the case of viscoplastic matrix

behavior, it is nonetheless overly stiff.

To introduce a tangent stiffness formulation, we note that the matrix plastic

strain rate is not explicitly required as in the previous case. The plastic hardening

0i



modulus h, based on the plastic internal state of the matrix material, is uniquely

related to the tangent stiffness, C ijMT

For deviatoric matrix plasticity, we may write

= C ... - = M  (3-1)
IV Yk0k h('mlrfu Id Id

Solving for the matrix strain rate iim during plastic flow,

• = I ei +  n (3-2)

We may write the modified Eshelby rate-type equation based on tangent stiffness as:

o': + j p + j =, - Tilo + it +.1- -3)%_ i kfLi~A N CU- 9 ).(3-3

Since the effect of matrix plastic deformation is introduced through the tangent

stiffness, we note that

and = "

-t(W! - t /), (34)

and !0° at ko-,o

where the Mori-Tanaka theorem (Mura, 1987) is employed to arrive at the form of

the interaction strain rate i '. It is important to note that a tangent stiffness method

must be employed in the reference material relation between iij and &.o*; strictly
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speaking, CijkITo should be based on the elastic-plastic state of a comparison matrix

material at stress aij°, but since ij° and aij are no longer uniquely related (as is the

case for deformation theory), a formulation for CijT will be introduced later.

The Eshelby tensor Skim. T in this case is based on the effective Poisson's ratio,

V, of the matrix which may be assumed of the form

V + (0.5 - v)

where v is the elastic Poisson's ratio of the matrix. Hence, 9 varies continuously

from v for h --, c to 0.5 at h = 0. This form is based on the dependence of the

tangent stiffness on the plastic modulus h. The tangent stiffness formulation is rather

insensitive to the choice of the form of V so long as 9 is allowed to vary continuously

between fully elastic and fully plastic limits.

The average stress rate in the matrix is given by

6M 0 (3-6)

where

a -= a _f _ -"(3-7)

in the tangent stiffness formulation. The average composite stress and strain rate are

given by
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' = (1 - f)6V+ o60 + A0+ 61+ 6P)

.0 .1 , .0

u + ° + J/ = °(3-8)

= to + ft.;..

This approach requires no iteration and is very efficient; it does involve several

additional matrix inversions, however, since the tangent stiffness must be updated at

each time step. For an applied stress rate &rn°, we may write the Eshelby

equation (3-3), after substitution, in the form

= [-C~T + T~km

(3-9)
T 8In]'*A-C~ , . - I .

where &Ci,,,= CijI"- Cijvd and 6k. is the Kronecker delta. Equation (3-9) is of the

form

AW60k, = BvJt,.,. (3-10)

Thus,

= (Btq),AqMO4. (3-11)
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With &i.° in hand, one may proceed to compute the rates of matrix stress and

composite strain.

As before, the matrix plastic strain rate is given by
pm l.m

= -a kln for F=O and 0 2 0h ON (3-12)

* i = 0 otherwise

where h is given in Appendix B for two incremental plasticity approaches. It is

important to note that the matrix stress, plastic strain, and any associated state

variables (e.g. backstress) must be updated to assign the current hardening modulus,

h, in the tangent stiffness method.

3.2 Formulation for Comparison Matrix Material in the Tangent Stiffness Method

In the general tangent stiffness formulation, the comparison material may be

assumed to have a compliance of the form

(Cjr1O { - + (C - (3-13)uw =  13(cO -1 +(c)
0

or

o 1 + If p)(Cr - (3-14)

0
such that
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I(COT'D-16 Z I(C4) 601 for 13 > 0 . (3-15)

The equality holds if f =O (i.e., the comparison material response is the actual matrix

material response), if B = 0, or for purely elastic response of the matrix. Note that

Cijkl is the stiffness of the matrix.

Introduction of the constant 3 is necessitated by the fact that the response of

the comparison material is not uniquely defined in the general elastic-plastic loading

case. Due to the constraint associated with both the fiber geometry and higher fiber

stiffness, the comparison matrix material generally has higher stress levels and,

consequently, lower tangent stiffness. It should be emphasized that the concept of

comparison material, and of the Eshelby approach for that matter, is rooted in linear

elasticity; hence, the incremental elastic-plastic case obviously must invoke the spirit

of the elastic approach but with additional consideration for the actual degree of

constraint in the plastic regime. The parameter B affects the rate of eigenstrain

accumulation only in the elastic-plastic regime. For B = 0, the degree of constraint

on the matrix plastic deformation is low as is the rate of eigenstrain accumulation

with composite strain accumulation. As B increases, the constraint on matrix plastic

deformation and, correspondingly, the eigenstrain accumulation rate both increase.

This leads to an increasing composite strain hardening rate with increasing B.

The introduction of the parameter B should therefore be viewed as a means

of specifying the comparison matrix material behavior in the elastic-plastic regime in
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the incremental approach. The secant modulus approach employed by Weng (1988),

another approximate application of the Eshelby concept, does not involve such an

assumption but is premised on applicability of the deformation theory of plasticity.

Therefore, it is restricted to monotonic, proportional loading. In general, it is

desirable to employ the incremental tangent stiffness approach for general loading

paths. Moreover, even under proportional loading of the composite, the average

matrix plastic strain rate varies nonproportionally for directionally reinforced

composites if the applied loading is not coaxial with principal material directions.

This is a first order consideration for unidirectional metal-matrix composites for which

the plastic strain rate in virtually any off-axis loading situation rotates away from the

fibers toward the direction of least constraint. For such composite materials with

preferred directions of plastic flow which minimize constraint, it may be anticipated

that B will be small since the flow will seek these orientations. Composites without

preferred reinforcement directions (e.g. particulate reinforced) will require

significantly higher values of 8 even though the average level of constraint may be

lower since there are no preferred directions of plastic flow to minimize constraint.

As a perhaps subtle but important consequence of the reinforced material's preferred

orientation, one may expect the possible existence of a composite yield surface with

an associative flow rule to depend on constraint anisotropy; the meaning of this term

will become clear as this discussion proceeds. The term is related to the anisotropy

of constraint hardening of the composite, i.e. creation of internal stress associated
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with inhomogeneity. At the very least, such a formulation would be highly complex

to model all observed effects (Wang, 1970). In general, this is due to the fact that

the matrix plastic strain rate rotates in a complicated manner relative to the

composite stress rate in response to changing constraint during the transition from

elastic to fully plastic matrix response.

In this work, we will apply the tangent stiffness approach to two very different

classes of elastic reinforcement in a ductile matrix. In the first case, we will consider

a silica spherical particle-reinforced epoxy composite previously treated by Weng

(1988) with the secant modulus approach. Then, we will consider unidirectional,

continuous fiber-reinforced boron-aluminum under various loading conditions.

In recognition of the lack of constraint on matrix plastic deformation for

fibrous composites loaded off-axis, we must also introduce a provision for transition

to matrix plastic deformation-dominated behavior. As reported by Dvorak and

Bahei-El-Din (1987), the off-axis behavior of certain unidirectional composites

typified by high fiber transverse shear modulus is essentially dominated by matrix

behavior in the plastic regime, nearly independent of fiber volume fraction. For

composites with low fiber transverse shear modulus, the tendency for matrix shear

localization and plastic strain rate rotation away from the fibers is not as great.

Dvorak and Bahei-EI-Din have defined these two types of unidirectional metal-matrix

composites as matrix-dominated and fiber-dominated, respectively.

While the issue of defining the comparison material response (i.e. B) for the
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must be accomplished via a transition to matrix-dominated deformation for off-axis

loading. This transition behavior will depend both on the plastic tangent modulus of

the matrix, h, and the projection of the direction of plastic straining in the principal

direction of reinforcement anisotropy (i.e. the fiber direction), e3. To accomplish a

decrease in the rate of eigenstrain accumulation (decreased misfit constraint) as

plastic flow becomes fully developed and rotates away from the fiber direction, we

may introduce an effective fiber stiffness

e;.- ( Ci ' x + (3-16)

to be used in the incremental EIAS approach instead of Cij " where

x = - t - e n'eal 1 - (3-17)

and a and c are the minimum and maximum diameters, respectively of the ellipsoidal

reinforcement. The maximum diameter, c, is assumed to be aligned with the e 3

direction. Constant h. is a small value of the plastic modulus h representative of the

transition to asymptotic (e.g. past the initial yielding regime) matrix strain hardening.

For the case of long fibers, (a/c) - 0; (ho/h)N then largely governs the transition to

matrix-dominated behavior. As (ho/h)N becomes much greater than 1, X -" 0 and tij *

-+ C WT . This is when matrix-dominated behavior is realized. Typically, N may be

expected to be sufficiently large (i.e. N >2) to esult in a continuous but rapid

transition to matrix-dominated behavior. The transition to matrix-dominated behavior
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matrix-dominated behavior. As (h,/h)N becomes much greater than 1, X - 0 and tw"

-- Cik T . This is when matrix-dominated behavior is realized. Typically, N may be

expected to be sufficiently large (i.e. N>2) to result in a continuous but rapid

transition to matrix-dominated behavior. The transition to matrix-dominated behavior

is also affected by the magnitude of the projection of the matrix plastic strain rate in

the fiber direction, Ie3.niji i-ej 3 l = n33 1 . Clearly, the transition is delayed and

fiber dominance persists until the matrix plastic strain rate rotates sufficiently away

from the fiber direction (i.e. In33 1 small). This condition is met more rapidly for

predominantly transverse loadings than for moderate off-axis loadings; hence, the

composite response remains fiber-dominated (tij-" m Cijk]) longer for loading

directions more nearly aligned with the fibers.

As ij - Cj1kT, the eigenstrain rate diminishes correspondingly by virtue of

(3-9), reflecting the loss of constraint on the plastic deformation. For fibrous

composites (i.e. low a/c) with a high fiber transverse shear modulus, the additional

assumption CiJ °, = CijT ( = 0) is reasonable since this equality holds rigorously

under both elastic and fully plastic, matrix-dominated conditions.

For fibrous systems with low fiber transverse shear modulus, it is necessary to

assign B > 0 since the transition to matrix-dominated behavior is not realized due to

the reduction of constraint anisotropy; hence, the comparison material response is

slightly different from the actual matrix response. For such cases, the rotation of the

matrix plastic strain rate relative to the fibers during loss of constraint anisotropy and
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interface shear localization is expected to be less pronounced and associativity of a

flow rule based on a composite yield surface is expected to be more realistic.

Note that for spherical particle reinforcement, (a/c)= 1 and X= 1 which leads

to t ijk" = Ci1,*. Only B affects constraint hardening in the plastic regime in this case,

as constraint anisotropy does not enter as a consideration. The following discussion

0 will serve to clarify this point.

A key idea in this formulation is the concept of constraint hardening. It may

be obvious that for systems with aligned ellipsoidal reinforcement, the composite is

at most elastically transversely isotropic if the matrix is elastically isotropic. It is well

known that such fibrous systems exhibit significant levels of "constraint" on matrix

* deformation. A perhaps subtle but very important concept is that of constraint

anisotropy which has been mentioned previously in connection with X. From a

formal standpoint, it is most instructive to view constraint in terms of its evolution

with plastic flow of the matrix. After some level of matrix plastic straining, the

anisotropic elastic-plastic state of the composite may be expressed as an isotropic

* tensor function of the unit vector 63 in the reinforcement direction and backstress aim

associated with the matrix kinematic hardening. The symmetry classes represented

by e 3 and aijm are transversely isotropic and orthotropic, respectively. We will refer

to the orientations of 63 and aim as structural and microstructural, respectively. Since

we wish to examine the role of plastic strain on constraint rate reduction, we may

introduce the symmetric second rank tensor *rij defined in eijp' space by
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u= .. , (3-18)

where *,j obviously is a vector in this space normal to the level surface okm(ewPm),

which may be viewed as a constraint surface valid for monotonic, proportional

loading; aTkkm(emnPm) is the hydrostatic constraint stress in the matrix which relaxes

as plastic strains are generated. Clearly, 4rj is the rate of increase of constraint stress

with plastic strain. In general, we may assign 4ij the form

= e )(3-19)

This may be expressed using the representation theorem in terms of the irreducible

functionality basis of the pair (63, aum ) (Wang, 1970). However, let us consider two

special cases which are of much relevance to both particle and continuous fiber-

reinforced composites.

First, for spherical particle reinforcement and elastic isotropy of both phases,

there is no preferred structural orientation (no structural anisotropy) and hence

4' - ,). (3-20)

For monotonic, proportional loading,

an = A(en7II))e" (3.21)

provided the matrix has at most only a purely hydrostatic initial residual stress.

Hence,
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r =, -. (3-22)

Clearly, invoking the total derivative of akkm(eijpm),

•.1 aO.kkP. "pm (3-23)

art -'-'"" = O •

The representation of *ij is (Wang, 1970)

qr A = 1(2J3)e + A2( 2J 3) e (324)

+ A #1243)6 a#

where

12 c i and 13 = e4 =p- (3-25)

are the two non-zero invariants of eij .

Hence, in general,

67k = A'(12J/j)llt ,I (3-26)

since

'U= (IIc I)FV = X(I2) e 7  (3-27)

for monotonic, proportional loading and

=0. (3-28)
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The constraint stress development is therefore independent of loading direction,

dependent only on the accumulation of plastic strain in the direction of loading. In

other words, the constraint surface am(keijPr ) is isotropic in plastic strain space.

For fibrous composites, on the other hand, structural anisotropy dominates;

and we may consider the influence of aijm to be small in comparison to that of 83 with

respect to composite response. In this case, we introduce the dependency

S-- #6643,a H) (3-29)

and express the representation of *ij with respect to the irreducible functionality basis

of 3, i.e.

* + 33 (3-30)

where (p > 0, t > 0, and t > (p such that liqijlj > 0 for all vectors, 1i. It is understood

that 4p and t may depend on the invariants of ,,j' and the joint invariants of aijm and

3, but the terms in the representation based on these generators have been omitted

as second order. In this case, the constraint hardening rate for monotonic loading

is approximated by

A # kJi (3-31)
=tlIP"ln. = td.

Consequently, the constraint surface evolves anisotropically. Moreover, the rate of
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constraint hardening increases proportionally with nijij:,3 3=n 33, the component

of the unit normal vector of the plastic strain rate in the reinforcement direction.

Since

IItI = (n) (3-32)

we may write (3-31) as

dkk, = tn3 3h -  
(3-33)

6!n

which is the ratio of matrix constraint to projected deviatoric stress rates. Bear in

mind that k depends on the magnitude of backstress as well. Note that this analysis,

based on equation (3-29), did not rely on proportionality of the matrix plastic strain

increment to achieve the result in equation (3-33).

We are now in a position to assess the form of constraint hardening

introduced in the incremental Eshelby analysis based on these symmetry

considerations. First, parameter B influences the comparison material response. For

the form adopted, for a given value of B, CiJ °IT depends uniquely on CiJk]T and hence

h, the matrix plastic tangent modulus. The constraint hardening rate will therefore

depend on the relevant structural/microstructural symmetry. For spherical particle

reinforcement and proportionally applied tractions,
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= A'(12,/3;)h- (3-34)

and for fiber reinforcement and proportionally applied tractions,

1& 0,; h (3-35)

where the dependence of both E and A' on B is implicit. Interestingly, equation (3-

35) indicates that &kk may become negative with monotonic plastic deformation only

for the fibrous composite if n33 < 0; physically, this condition is that of a negative

matrix plastic strain rate in the fiber direction. Clearly, the issue of distinct branches

of stress-space composite yield criteria relating to matrix- and fiber-domination is

related to the constraint anisotropy inherent in the structural symmetry class of

transverse isotropy.

A related issue is that of X, which is employed as a means of transitioning to

matrix-dominated behavior in the incremental Eshelby approach, forcing the

eigenstrain rate to vanish under fully plastic conditions. This is equivalent in

principle, to the continuum slip model for the matrix-dominated mode suggested by

Dvorak and Bahei-E1-Din (1987) but is also quite different since a micromechanical

framework is employed here rather than construction of a composite flow rule. The

rate of change of the constraint in the Eshelby approach is assumed to additionally

depend nonlinearly through E on h and n33, i.e.
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6 = t(a,43;,h,n3)n 33h -, (3-36)

6 n

where again implicit dependence on B, h and n33 is expressed. Note that X employs

explicit dependence on h and n33 to correlate off-axis constraint weakening with

plastic deformation. Note also that X = 0 for spherical particle reinforcement since

the constraint hardening is isotropic in this case. See Appendix F for a more detailed

discussion of constraint hardening in fiber-reinforced composites and development

of the X funtion.

3.3 Solution Procedure for the EIAS Method-Tangent Stiffness Formulation

Per the discussion in § 3.1 and 3.2, the BALNIT program was modified

accordingly. The BALNIT program incorporating the tangent stiffness method only

was called TAN1. With the exceptions stated in § 3.1, the solution procedure for

TANi remains the same as BALNIT.

The TAN1 program was modified to include the B parameter and the X

function. This program was called CSTAR since one of its key features is the

modification of the fiber stiffness (C1j") to lessen the constraining power. Again, the

solution procedure remains the same with the exceptions stated in §

3.2. Flowcharts for these programs are in Appendix C.
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CHAPTER IV

DISCUSSION OF RESULTS

4.1 Introduction

Two composite systems were investigated - boron-aluminum (B/Al), a

unidirectionally continuous fiber-reinforced MMC and a silica spherical particle-

reinforced epoxy composite. The results as applicable to B/Al will be discussed first.

Discussion of the results for the silica-epoxy composite are in § 4.7.

4.2 Application to a Fibrous Reinforced Composite

Due to its Zood fiber/matrix bonding and very periodic microstructure with

virtually no presence of voids, B/Al is in many ways a model material system which

can be employed as a standard to test the accuracy of micromechanic composite

models (Pindera and Lin, 1989). The constituent material properties for the B/Al

system investigated are listed in Appendix E. These properties correspond to those

used by Dvorak and Bahei-EI-Din in their experimental work on B/Al (1988). Note

the high transverse shear stiffness of the boron fibers. The Eshelby tensor for

circular, cylindrical fibers and the nonlinear kinematic hardening rule utilized in this

investigation are shown in Appendices A and B, respectively. The actual uniaxial



experimental behavior of the aluminum matrix material as shown in (Pindera and Lin,

1989) was used instead of the "in-situ" properties employed sometimes in

development of micromechanics models. This in itself represents an issue and a

possible advantage of the present model over other approaches, as will be discussed

later. Uniaxial experimental data on B/Al, as presented by Pindera and Lin (1989),

were utilized as a basis for determining the accuracy of our models. Although not

specifically given, the fiber volume fraction of the composite used in the experiments

appears to be approximately 48%. We were able to "back this out" using the

constituent elastic properties, the composite modulus for the 00 test, and a rule of

mixtures method.

Uniaxial histories were run on the three composite models (programs

BALNIT, TAN 1, and CSTAR) in the 0° and 90° orientations as well as three off-axis

orientations, 100, 150, and 45°. These correspond to the orientations investigated

experimentally by Pindera and Lin (1989). The results of the tests were plotted as

ff. versus T. where the zz-direction corresponds to the loading direction. Note that

UZZ and 9z, represent the average composite stress and strain, respectively.

4.3 Analysis of Results using the EIAS Method with Elastic Constraint

Figures 4 and 5 show the results using the ELAS Method with Elastic

Constraint. As expected, the results are extraordinarily stiff. The model does

reasonably well in the elastic regime since the Eshelby approach is based on elastic
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considerations. However, once past the point of initial yielding, continued

accumulation of matrix plastic strain, which is treated as a negative eigenstrain, causes

increased constraint and an overly stiff response. These results confirm what has

been stated consistently in the literature, that unmodified self-consistent approaches

are inadequate for modeling elastic-plastic behavior of composites, particularly for the

case of the ductile matrix.

4.4 Analysis of EIAS Method-Tangent Stiffness Formulation

Figures 6 and 7 show the results of the tests using the EIAS Method-Tangent

Stiffness Formulation with B=0 and without the X function, i.e. tijk°=C1jk
° always.

With B=0, the comparison material is the same as the matrix material. The model

does reasonably well in approximating initial yielding behavior but does not capture

the transition to asymptotic plastic flow. Without any correction for unwarranted

eigenstrain accumulation, we see the composite stiffen in the plastic regime following

initial yielding. These results demonstrate, however, that the tangent stiffness method

has improved the model's ability to approximate initial yielding (i.e. the position and

shape of the "knee" in the curve). However, eigenstrain accumulation or, conversely,

excessive constraint hardening, still presents a problem. Extensive analysis was

conducted to determine the effect of various values of B on the response and to

determine if B alone would reduce the effects of excessive eigenstrain accumulation

and bring the response more in line with the experimental data. These efforts proved
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futile, as would be expected based on the discussion of constraint anisotropy in the

previous section. A particular value of 13 would suffice only for a particular loading

direction. It was evident that the X function is necessary to model the change of

constraint hardening for all orientations. The B factor is a comparison material

parameter which should be unique to a particular composite system and should not

change with each loading orientation for even continuous fiber-reinforced composites.

4.5 Analysis of Rotation of the Plastic Strain Rate Yector

Based on the literature, the inelastic response of the composite should

asymptotically approach (or closely approximate) that of the pure matrix material for

certain ranges of off-axis uniaxial loading directions relative to the fiber direction.

This motivated an investigation of the rotation of the plastic strain rate vector, ifJPr ,

as a means of studying the transition from fiber-dominated to this so-called matrix-

dominated behavior.

To help illustrate this point, we employed the tangent stiffness method with

B=0 (no X function) and plotted the matrix plastic strain in the fiber direction, C33Pr,

versus the matrix plastic strain in the transverse direction, E22po, for several different

monotonic, uniaxial loading orientations of interest. The directions 33 and 22 refer

to the fixed material coordinate system, 33 being the direction of the aligned fibers.

These results are shown in Figure 8. It is important to note that the tangent stiffness

method accurately modeled the initial yielding regime. Therefore, it is accurate up
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to approximately 0.2% strain. Therefore, the results shown in Figure 8 are also

accurate for this same strain range. For the 00 orientation, relatively significant levels

of positive e33
pm are generated while only limited levels of negative e22

pm are

observed. This is in accordance with plastic incompressibility of the matrix. No P'

rotation takes place in the 00 direction. In the 100 orientation, the response is initially

very similar to that of the 00 orientation; however, rotation of iijPm causes generation

of positive e22p, and we see the curve rotate towards positive e22Pm. In the 15'

orientation, we observe behavior similar to the 10' orientation. Due to faster rotation

of i pr , the curve turns more rapidly to the right, again demonstrating the increasing

dominance (or positive magnitude) of c22pm. The behavior of the 450 and 900 loading

angles are essentially matrix-dominated from the outset. The negative values of e33
pm

observed in the 900 direction are realized due Poisson's effect. Based on these

results, we recognize the tendency of the matrix plastic strain rate vector to rotate

and align itself with the 22-direction. Since predominance of e2 m in the response

is indicative of matrix-dominated behavior, we conclude that the transition to matrix-

dominated behavior is related to the rotation of &ij
po'. Only a micromechanical model

can accurately predict this effect. It is very important to note that this effect is

predicted without introduction of the X function; X merely serves to affect the

eigenstrain rate past the initial yielding regime. Also, since the matrix plastic strain

rate is nonproportional even though the tractions are applied proportionally, this

casts grave doubts on the possibility of constructing a simple, associative flow rule
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plasticity framework based on a composite yield surface, at least for composites which

exhibit this transition to matrix-dominated behavior.

4.6 Analysis of the EIAS Method-Tangent Stiffness Formulation with B Parameter

and X Function

Figures 9 and 10 show the results of the tangent stiffness method including the

X function. B=0 was selected on the basis that the B/Al composite is expected to

exhibit a matrix-dominated regime where the incremental composite response is

essentially governed by that of the matrix. In the X function, the parameters h.= 180

ksi and N=4 were selected to best fit the uniaxial test in the 450 orientation. Good

results are realized in all orientations as the model now approximates a continuous

transition to matrix-dominated, plastic deformation for off-axis loading. The X

function controls the rate of constraint hardening; therefore, we do not see increased

constraint and the associated stiffening caused by eigenstrain accumulation as was the

case with the model without the X function. Comparing the 100 response to the 45'

response, the reduction of constraint is more gradual in the 10" orientation; the

model "recognizes" that the loading is more nearly aligned with the fiber direction

and hence the response will remain fiber-dominated longer (i.e. it takes longer to

realize matrix-dominated behavior).

It is important to point out that use of an incremental plasticity theory enabled

us to conduct the rotation analysis of iif . The secant modulus method (Weng,
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1988), in contrast, cannot support such studies because a backstress computation,

inherent to an accurate incremental theory, is required to analyze iJPm rotation with

some degree of accuracy. Also, it is anticipated that the constraint anisotropy issue

will not be as pronounced for fibrous composites with low transverse elastic shear

modulus; in this case, a combination of B>0 and the X function is most likely

necessary.

The goal of concentric cylinder models which incorporate interface phases

(Mikata and Taya, 1985) as well as the recently proposed "smear" model (Luo and

Weng, 1989) both seek to describe the interface shear localization and loss of

constraint by modifying the transformation strains. In contrast, our approach is to

introduce an effective fiber stiffness; nonetheless, the goal is similar.

4.7 Application to Particle-Reinforced Composites

Next, we apply the tangent stiffness model to the elastic-plastic behavior of a

silica particle-reinforced epoxy composite. The silica is elastic, and the epoxy is

elastic-plastic. Both phases are assumed to be isotropic. The material properties are

from Weng (1988) and are listed in Appendix E. The Eshelby tensor for spherical

particle-reinforcement and the isotropic hardening plasticity theory employed to

model the epoxy matrix behavior are given in Appendices A and B, respectively.

As stated in section 3.2, there is no structural anisotropy with spherical

particle-reinforced composites. The fiber diameter ratio (a/c) = 1; therefore, X =
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1, and C ijk" = Cjk'. Hence, only B affects constraint hardening. The EIAS Method-

Tangent Stiffness Formulation with the B parameter for calculation of comparison

matrix material response was used to calculate the uniaxial response of the composite

with the same volume fractions as in Weng's work (1988).

Experimental data (Weng, 1988) were digitized and plotted with the results

of the tangent stiffness model in Figures 11-13. The composite stress versus plastic

strain is considered in these plots and is of course, orientation independent for each

volume fraction of reinforcement.

The composite response was calculated with B =0 and B =8. The plot for 3=0,

Figure 11, represents behavior of the composite when the comparison matrix material

response is the same as that of the actual matrix material. The results of the tangent

stiffness model best fit Weng's secant modulus approach when 3=8. These results

are plotted in Figure 12, while the experimental results are shown in Figure 13.

Several points are noteworthy. First, the results agree relatively well with the

experimental data. Second, the results are very similar to those of Weng who

employed the EIAS method with a secant modulus based on the deformation theory

of plasticity. It therefore appears that the tangent stiffness method is a reasonable

extension of the secant modulus concept for the solution of incremental elastic-plastic

problems involving complex cyclic loading paths. Refer to Appendix D for a more

complete comparison of the two methods.

Due to the linear combination of B and f in (3-14), the response stiffens for
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a particular B as the volume fraction f increases. An increase in f leads to increased

constraint and, consequently, a much stiffer response in the yielding regime. This fact

is borne out by Figures 11 and 12. The stress versus plastic strain curves with B=0

are much flatter than those with B=8 for the same volume fraction of reinforcement.

Finally, our results with the tangent stiffness method with 3=8 are stiffer than

Weng's results, especially at lower volume fractions. One notes, however, that the

actual experimental results are also stiffer than Weng's theoretical results (Weng,

1988).

The material response calculated using the EIAS model with elastic constraint.

as shown by Weng (1988), is significantly stiffer than experimentally observed. This

concurs with the results of our earlier calculations on B-Al fibrous composites.
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

5.1 Summary of Composite Material Model

As a result of our theoretical study of the inelastic behavior of unidirectional,

continuous fiber-reinforced metal-matrix composites, we developed a practical,

computationally efficient micromechanical model which satisfactorily approximates

experimental inelastic behavior of certain composites. This model is limited to two-

phase composite systems where the matrix is the ductile phase but can be modified

for any aspect ratio of aligned reinforcement by employing the appropriate Eshelby

tensor. Material properties of the constituent phases must be input to the program.

Detailed information regarding the stress and strain states of the composite as well

as that of the individual phases can be obtained from the model.

The model employs a sophisticated nonlinear kinematic hardening rule to

model the plastic flow of the matrix. Use of this incremental plasticity theory

necessitates introduction of a tangent stiffness method instead of a secant stiffness

method, which is restricted to deformation plasticity theory. Furthermore, use of an

incremental theory facilitates consideration of nonproportional and/or cyclic loading

histories.



The model employs two additional parameters, B and X, to account for the

constraint effects associated with eigenstrain accumulation and anisotropy due to fiber

reinforcement. Although no exact function for the B parameter has been determined,

intuitively it is " function of reinforcement volume fraction, fiber geometry, and

elastic properties of the reinforcement. The B parameter is most singularly

0 applicable to composite systems with little or no reinforcement or structural

anisotropy while the X function addresses cases of structural anisotropy, e.g.

unidirectional, continuous fiber-reinforced systems.

5.2 Significant Findings

* Due to the heterogeneous character of composites, the behavior of one

constituent is not mutually exclusive of that of the others. This interaction of the

phases renders analysis of the homogeneous aggregate very difficult, particularly in

the plastic regime. In this thesis, we recognize the deficiencies of the EIAS method

with elastic constraint and pursue sound methods of modifying the comparison

* material to collectively, and perhaps indirectly, take into account the first order

effects. Our ultimate goal in this process was to effectively model the inelastic

behavior of unidirectional, continuous fiber-reinforced composites.

In parallel to Weng's secant modulus method (1988), we introduced the

tangent stiffness method. Our use of an incremental plasticity theory enabled us to

* instantaneously compute the matrix plastic hardening modulus which was used to

58



compute the "tangent stiffness modulus." This method produced equal, if not

better, results than Weng's secant modulus method based on a comparison for a

spherical particle-reinforced composite system, but failed to effectively approximate

the experimental behavior for fibrous systems.

Recognizing that the overly stiff response was due to the overconstraining

effects unique to fiber reinforcement, we focused on the realization that experimental

results evidenced an eventual but complete transition to matrix-dominated behavior

for all off-axis loadings, at least for the B/Al composite considered. From the analysis

in § 4.5, we identified the rotation of the matrix plastic strain rate vector as the

primary cause for the transition to matrix-dominated behavior. Our X function

employs this rotation concept as a means to reduce the effect of fiber constraint

anisotropy and represents a significant development above and beyond any methods

currently in existence for modeling inelastic behavior of fibrous composites. By

incorporating the X function into the EIAS method-tangent stiffness formulation, we

successfully approximated the behavior of a fibrous system.

We also introduced the B parameter as a means of accounting for the isotropic

constraint effects in composites. This parameter is more relevant to composite

systems with little or no reinforcement anisotropy (e.g. spherical particle-reinforced

composites) instead of systems reinforced by unidirectional, continuous fibers. As

stated in § 3.2, fibrous composites may have distinct preferred directions of matrix

plastic flow due to their aligned reinforcement whereas there are no such clearly
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defined directions of flow in the spherical particle-reinforced composite. Additionally,

the fibrous system with high fiber shear stiffness will tend to reduce constraint

hardening rate through the phenomenon mentioned above, matrix plastic strain rate

rotation, as well as interface shear localization. The particulate system cannot relieve

constraint preferentially; therefore, it experiences additional constraint in the

asymptotic plastic flow regime. Hence, the 8 parameter is required for the spherical

particle-reinforced system, but it is not needed with the fibrous system considered.

Perhaps one of our most significant findings is that we have substantiated the

experimental observations of B/Al behavior made by Dvorak (1987) which formed

the basis of their bimodal plasticity theory of fibrous composites (Dvorak and Bahei-

El-Din, 1987). Due to the plastic strain rate rotation exacerbated by the high boron

fiber transverse shear stiffness, we support Dvorak and Bahei-El-Din's findings of

non-normality of the plastic strain rate vector and "flats" in the composite yield

surface. However, we feel that it is inadvisable to attempt to model a composite such

as B/Al, which so clearly demonstrates both modes of deformation, with a normality

flow rule based on a composite aggregate yield surface. This type of approach migh

be more successful when applied to a system with more compliant fibers in transverse

shear. We find it particularly interesting that we have recovered Dvorak and Bahei-

EI-Din's anomalous results through an entirely different approach based on

micromechanics.

Finally, we find it quite interesting that we were able to achieve good results
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without consideration of the so-called "in-situ" behavior of the matrix. We utilized

the actual uniaxial experimental behavior of the aluminum matrix material as shown

in Pindera and Lin (1989) to determine the material parameters required to model

matrix flow instead of the "in-situ" properties used by so many in the development

of their micromechanics models (Pindera and Lin, 1989). This in itself represents a

significant departure from contemporary approaches and may be viewed as an

advantage of our model over these approaches, unless the "in-situ" behavior is (i)

warranted based on different dislocation structure and/or (ii) determined to coincide

with that actually employed in other models. Otherwise, the assumed matrix response

in other models may be viewed as a kind of "first order fitting factor." As an

example, Pindera and Lin (1989) adjusted the actual material properties to the so-

called "in-situ" properties to allow for the effects of fabrication on the matrix material

and so that their analytical results correlated with the experimental data. The matrix

response is 'backed out" by fitting the composite response. This 'backing out"

process is not required with our model.

5.3 Recommendations

As stated before, modeling of composite behavior is very complex because

there are so many variables to take into consideration. For instance, shear-

localization at the fiber-matrix interface is universally recognized as having a

significant effect on the strength of fibrous composites, especially systems such as
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B/Al which has a high fiber transverse shear modulus. However, we achieved

acceptable results without specifically addressing this in our model. Perhaps we

indirectly accounted for it in our introduction of X for structural constraint anisotropy.

Application of our model to systems reinforced by compliant fibers is outside the

scope of this thesis. Therefore, we have several recommendations for future research

to further test the validity of our model.

First, the EIAS model-tangent stiffness method with the X function should be

applied to a system reinforced by compliant fibers (eg. graphite) to determine how

well it replicates experimental data. Certainly, we expect the X function to play a

different role for the compliant system.

Secondly, it would be interesting to conduct a similar plastic strain rate

rotation analysis on this compliant system to see if it demonstrates both matrix- and

fiber-dominated deformation modes. According to Dvorak and Bahei-El-Din, a

system such as graphite-aluminum should deform only in the fiber-dominated mode

(1987). If this is the case, plots of e 33Pm versus e 22Pm for uniaxial, monotonic loading

in off-axis orientations should retain a higher degree of proportionality than that in

Figure 8.

Finally, we stated that we utilized an incremental theory so that

nonproportional and/or cyclic loading histories could be applied to our model. We

did not report any such histories, but it would be interesting to see how our model

correlates with the data recorded by Dvorak and Bahei-EI-Din for nonproportional
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loading experiments conducted on B/Al (1988).
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APPENDIX A

ESHELBY'S TENSOR OF ELASTICITY, Suk,

A.1 Introduction

In the context of the equivalent inclusion problem, the Eshelby tensor of

elasticity, Sijkl, relates the eigenstrain, ekl", to the perturbance strain, eijPt. In general,

Sijk is a nonsymmetric tensor calculated based on the geometry of the composite

reinforcement. Mura (1987) derives the Eshelby tensor in great detail for both

isotropic and anisotropic inclusions. Since the composite systems analyzed in this

thesis had isotropic inclusions, we show here the essentials to understand Mura's

derivation of the Eshelby tensor for isotropic inclusions and give the equations of the

Eshelby tensor for spherical and continuous fiber-reinforced composites. The

problem and associated field equations are as set forth in § 2.1 and § 2.2 of the main

thesis.

A.2 General Expressions of Elastic Fields for Given Eigenstrain Distributions

Eigenstrain is introduced as a description of misfit due to periodic

inhomogeneity typical of reinforced composites. The corresponding eigenstresses are

self-equilibrated.



0 Following Mura (1987), the fundamental linear elastic equations to be solved

for given eigenstrain eij" are

*CV0 = CL (A-i)

where ui is the displacement at an arbitrary point x(x1,x 2,x3). The body is assumed

to be free of any external surface traction or body force such that aijj=0 everywhere

within the body and a1jnj=0 on the boundary. We will consider the body to be

infinitely extended such that aij - 0 as xi - oo reproduces the traction free condition.

* In the case of periodic solutions, suppose ei*(x) is given in the form of a single wave

of amplitude eij'(E ) , such as,

P -,(x) - $)exp(i -x), (A-2)

where is the wave vector corresponding to the given period c 'the distribution, and

Si = rf and x = t xkk (A-3)

since = je. The solution of (A-i) corresponding to this distribution is obviously in

the form of a single wave of the same period, i.e.

u(x ) = W't)exp(itox)" (A4)

Substituting (A-2) and (A-4) into (A-1), we have

CQ~j~~ ~ -IC(A-5)

which represents three equations for determining the three unknowns fij for a given
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eij°.

Using the notation

the displacement amplitude vector ai is simply obtained as

=() X ,OrlIl ), (A-6)

where Nij are the cofactors of the matrix K j(t) and D(&) is the determinant of Kij(&).

Substituting (A-6) into (A-4), we have

u1(x) = - (A-7)

The corresponding equations for strain and stress are

= Ix) = + uJ)

2

+ E tI)}D-(t)exp(i x), (A-8)

a 4AX) =~IEk -e;

=CuC,:() Z, &~ ,,(Z)exp(i -x)

A-83



A.3 Method of Fourier Integrals

A more sophisticated distribution of eigenstrain than the single wave in

equation (A-2) may be introduced. Of course, any distribution may be represented

by the single wave solution in the Fourier series sense. If eij" is given in the Fourier

integral form for an infinite domain, namely,

e Vx) = f j(;)exp(i t.x)dt, (A-9)

where

. (27)- 3 f e*(x)exp(_it.x)dx'  (A-10)

then the displacement, stress, and strain can be expressed as

ux) = -(2n)-3 - f f cje.(x) tVO()D-'(t)

xexpYiZ.(x - x))dtdx',

- - (A-Ila)
e (x) = (2n)-3 f f '!c ,-(x')

-ft -f2

" tjjtjijk(t) + t:j(t)jD-'(t)

" exp{it.(x - x')jdtdx',

and
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a 04x) = Cu 4(2n)-3 ff
-.. (A-11b)

xexpQi9 *(x - x')}dtdx' - e*(x)l

for general eigenstrain distribution ej,(x).

A.4 The Method of Green's Functions

When Green's functions Gij(x-x') are defined as

0w

G. x-x) = (2n)-3 f Na( )D-(t)expli&.(x-x')ldt, (A-12)

the displacement ui(x) in (A-11) can be rewritten as

ui(x) = - f Cc,e,(x')GjIx - x')dx', (A-13)
0 -m

where Gi,,1(x-x') = a/oxl{Gij(x-x') " -a/I x1'{Gj(x-x').

The corresponding expressions for the strain and stress become

IkX f C,,.e:(x,){Ga. xx,)+Git. (x-x,)ldx," (A-14)

and
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004) = iCfi C e:m(x)G., 4ix-x1)dxI (A-1S)

In 1963, Mura (1987) rewrote oa(x) in (A-15) in the form

ao() = C. fe,,e.C,,,G,(x-x)e,(x)dx, (A.16)

where eijk are permutation symbols. Since eStheinh = 6 slstn-1sn'tl, (A-16) becomes

a4(x) = C&._ CPf (G ,et - G ,,1e:)dx'. (A-17)

Following Mura (1987), it is shown that

CmGk(r-X) = -8 ,8 (x-x'), (A-18)

where 6(x-x') is Dirac's delta function having the property

f x)8(x--)dx' = ejx).
-f

It is seen from (A.-18) that the Green's function Gpk(X-X') is the displacement

component in the xp-direction at point x when a unit body force in the xk-direction

is applied at point x' in the infinitely extended material. By this definition of the

Green's function, we can derive (A-13) directly from (A-1). As mentioned previously,

the displacement ui in (A-i) can be considered as a displacement caused by the body
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force -Clmnemn,i* applied in the x,-direction. Since Gij(x-x') is the solution for a unit

body force applied in the x,-direction, the solution for the present problem is the

product of Gij and the body force -Cjilmnemn,, namely,

Ui(x) f G 4.(-x)Cj.e* (x)dx'. (A-19)
-M

Integrating by parts and assuming that the boundary terms vanish, we have,

ai
u1(x) = fj ,m x_ (- x')dx'" (A-20)

Expression (A-19) is preferable to (A-20). When eun" is constant in n and

zero in D-ni (as per the Eshelby solution), it can be seen that the integrand in (A-20)

vanishes except on the boundary of n since emn'=O in D-n and emn,,j=0 in n.

A.5 Explicit Forms of the Green's Function for Isotropic Inclusions

An inclusion, containing eigenstrain eii, is isotropic if it has the same elastic

moduli as its surrounding domain. For isotropic materials, the integrands in

equations (A-11) are

D(t) = 12(l + 21i)t, (A-21)

Nu ) = j{(A + 2p)8 - _( +

where t2= kk and I and /t are Lame's elastic constants (u is the shear modulus).
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If we substitute the expressions in (A-21) into the integral expression for the

Green's Function (A-12) and integrate, we obtain

G I(x) = I _ I. + 1 (6 _ xNx/ix12)}8RPII X 2p(A-22)

167.(1 - {(3 - 4v)b, + x I/ixI }

where I x =(xx.)'1, or

1 8 2 2X-X'l (A-23)
0 - Ix-X'I 1671 p(l - v) Ax,23

where v is Poisson's ratio and I x-x' I =( -x')(x-x,'). Equation (A-22) or (A-23) is the

form of the Green's function we need to obtain explicit expressions for the Eshelby

tensor based on the geometry of the reinforcement.

From (A-20), we have the following expression for the displacement in terms

* of the Green's function:

u,(x) = -Cik,,, ,,,(x-x)dxl, (A-24)

0
where n is an ellipsoidal inclusion given by the equation

2 2 3X, X2  X3  1
2 2 2a, a2  a3

where a,, a2, and a3 are the axes of the ellipsoid.

* Gij(x-x') is from (A-22).
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After some manipulation, equation (A-24) can be rewritten as

uj(X) =(n ) _dx' (A-25)
8un (I v) a I I 2_

where

gok(h) = (1 - 2v)(,nk + btj - bip) + 3n,nink (A-26)

The vector fi is the unit vector (x'-x)/I x'-x I.

When point x is located inside the inclusion, the integral in (A-25) can be

explicitly performed. The volume element dx' in (A-25) can be written as

dx'=drdS=drr2dw, where r = I x-x I and dca is a surface element of a unit sphere z

centered at point x. Upon integration with respect to r, we have

u,(x) = v) f r(n g,(is 'c "  (A.27)

Following Mura (1987), the integral (A-27) may be transformed to

u,(X) X MC ik dw (A-28)
8,1) -- v) d 9 ,

where

nI  n2  n3

A, 2' 12 2 ;L 2'a, a2  a3

and
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32

g = 
2

d*1 ai

From ejj(x)=/2(uij(x)+u j ,i(x)), the strain components become

e J)= ________ + A(A-29)

*16c (1 - v) fE g

The integral in (A.29) is independent of x. Therefore, we have verified Eshelby's key

result in that the strain (and therefore the stress) is uniform inside the inclusion.

* It is convenient to write (A-29) as

u = SiVUJ ' (A-30)

* where Sil,, is called the Eshelby tensor; Sijkl takes on the general form

SI 1n1 = f Xign + (A-31)

for an isotropic material with an inclusion. Note that the Lame's constants

correspond to the matrix since the isotropic inclusion is assumed to have the same

* elastic properties as the matrix but with an eigenstrain introduced in n. The Eshelby

tensor is not symmetric in general.

A.6 Eshelby's Tensor for Spherical Inclusions

In our analysis of spherical particle-reinforced composites, we utilize the form

of the Eshelby tensor for spherical inclusions. When the inclusions are spherical in
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shape, al=a2=a 3, and (A-31) simplifies dramatically. The equations for the non-zero

components of the Eshelby tensor are:

S I 1  S~ = S3333 =7 - 5v
15(l - v)

S S S = S 5v- 1 (A-32)
15(1 - v)

S11 22 33 4 -5v
= = = - v)

A.7 Eshelby's Tensor for Continuous Fibers

If the inclusions are elliptical cylinders (i.e., a3 -. as is the case with

* continuous fibers, then the non-zero components of the Eshelby tensor are:
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S1111  + 2(1 { + (1 - 2v) a2 2

S1122 2(1 v) (a, + a2)2 a, +2) a 2

1 2va

=  2(1 - v) al + 2a2 + (A-33)

1I= 1 2va22(1 - v) a +a 2  a

21

1 a. _ (1- 2v) a2
21 2(1 - v) I(a, + a2)2  a, a2J

I22 2a 2

2(1 v) a + a2 (A-24S13 3  = ( 1 + 2 31 1

2(1 -v) a + a

It should be emphasized that v in (A-32) and (A-33) pertains to the Poisson's ratio

of the matrix material.
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APPENDIX B

INCREMENTAL THEORIES OF PLASTICITY

B.1 Introduction

The purpose of this appendix is to summarize the incremental plasticity

* theories used to calculate the increment of matrix plastic strain, &eijp . Two theories

were utilized: a nonlinear kinematic hardening theory with backstress decomposition

and an incremental isotropic hardening theory.

B.2 Nonlinear Kinematic Hardening Theory

* The nonlinear kinematic hardening theory selected in this work for

representation of matrix behavior is along the lines of that employed by Chaboche

and co-workers (1978, 1983a, 1983b) and further developed by McDowell (1985) and

McDowell and Moosbrugger (1989) for nonproportional cyclic plasticity. The

kinematical hardening variable or backstress, aij, is decomposed into an arbitrary

* number of components representative of dislocation interaction at corresponding size

scales. This permits accurate description of complex plasticity phenomena. Defining

the yield surface in the von Mises form

I



F= , - R2- - (-i

where. oijm = ' - (1I3)Okk86ij and a,, is assumed to be deviatoric, we can write the

flow rule as

v J if F=O and 6 k,-O (B-2)

= 0 otherwise.

By the consistency condition, if F=O during plastic flow, we may write

aoF'
a#= 0 0 + aa U aV 2RPR. (B-3)

The nonlinear kinematic hardening rule is of the form

&!)= C(n{b(x)nv - an (B4)

where n = 1,2,...,M is the total number of decomposed backstresses, i.e.

(n; (B-5)

and

1

In equation (B-2) and (B-4),
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aF IO

and C(n) and b(n) are material constants. In this study, we assume pure kinematic

hardening (R=O). Using (B-1), (B4), and (B-S), (B-3) leads to

M

h E C(jb- - a(,,)n,,] (B-7)
n=i

For the aluminum in this study, M=2, C ) - 12, C 2) - 1400, b(' ) = 15, b(2)

= 5.6, and R = 2.0 ksi.

B.3 Incremental Isotropic Hardening Theory

Weng (1988) tested his secant modulus theory on a composite with an epoxy

resin matrix reinforced with silica particles. He gives the following information to

represent the behavior of the epoxy matrix:

SO, H(Pn' (B-S)

where =ym = 11 ksi a uniaxial yield strength; H = 4.67 ksi; n = 0.26;

the effective matrix stress is

5M 3 3 ,. (B-9)
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effective matrix plastic strain is

ipm 2.,., (B-IO)
3

and the deviatoric matrix stress is

,a 3 - (B-11)

We use isotropic hardenirg plasticity with the yield surface (i.e. no backstress)

F l = ' - Y2. (B.12)

The flow rule for determining plastic matrix strain is

.. 1 ..

I ( " ) if F=O and ,& '(B-"3)

= 0 otherwise,

where

n Oa O 3 (B-14)

Io,-1 2 ",,
ja;

The yield surface radius, Y, is
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Y= +

where

= P" - f -,- = Pm. (B-16)
0

This theory is valid only for proportional loading. By the consistency condition, F0

during plastic flow; therefore, h, the plastic hardening modulus, is given by

2H4 -G' =aY)-' 2 " (B.17)
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APPENDIX C

FLOWCHARTS FOR COMPUTER PROGRAMS

The purpose of this appendix is to outline the logic in the various FORTRAN

programs employed to calculate the theoretical results presented in this thesis. This

appendix includes flowcharts for the three analytical methods presented in Chapters

II and III. These were the EIAS Method with Elastic Constraint (Program

BALNIT); the EIAS Method-Tangent Stiffness Formulation (Program TAN1); and

the ELAS Method-Tangent Stiffness Formulation with B parameter and X function

(Program CSTAR).

The main program reads in the stress rate and time step from an input file

called BALIN. The applied stress increment is calculated by two subroutines called

SETUP and INTEG (for INTEGration). The SCM (for Self-Consistent Method)

subroutine is then called to calculate the output variables. These output variables

were:

a . the composite stress;

Ii the composite strain;

e li plastic matrix strain;

a., matrix stress;



and ij increment of plastic matrix

strain.

After returning to the main program, the stress and strain state for that particular

time step is written to an output file called BALOUT. The program continues this

* cycle until the loading history is exhausted.

The SCM subroutine varies for each of the three programs. In the BALNIT

program, the SCM subroutine is based on the EIAS Method with Elastic Constraint

detailed in Chapter II of the main thesis. The flowchart for this SCM subroutine is

shown in Figure C-1. The SCM subroutine for the TAN1 program is based on the

ELAS Method Tangent Stiffness formulation presented in § 3.1, and its flowchart is

shown in Figure C-2. Finally, the SCM subroutine for the CSTAR program, which

incorporates the 3 parameter and X function into the EIAS Method Tangent Stiffness

* Formulation, is shown in the flowchart in Figure C-3.
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APPENDIX D

COMPARISON OF THE TANGENT STIFFNESS APPROACH
WITH THE SECANT STIFFNESS APPROACH

According to the Eshelby approach, secant stiffness method (Weng, 1988),

* -r, ) = C!en, - 4j); n = 1,2,3 , (1))

where ck1 = ek', the comparison material strain; ekl2 = ekI, the image strain, ek 3

= en , the perturbation strain; and ek" is the eigenstrain. Here, Cijk ' is the matrix

secant modulus.

Now, at the next stage of deformation, we again apply the secant stiffness

* method, i.e.,

(D-2)

(cP + 8clM)(Y, - H + - 54, ).

Subtracting state (D-1) from state (D-2) gives

C:.( ,) ,(I4 - .4, + c1.1) , - 84;)
+ Ece( XU - e,( )

or



C ; O (E t = 8[;[c -P - el)] (D4 )

+ 8cg-a(Ee4) - 64] .

But, noting that the tangent stiffness approach is given by

c,.(Et,) - 6t] = [C.4k - e)1, (D.

where CijlT is the tangent stiffness of the matrix, it is clear that (D-4) may be written

as

;= cu~a~e4 _s r4 -6)4~~ ~

tangent stiffness approach

Equation (D-6) infers that the tangent stiffness approach, in principle, differs from

successive application of the secant stiffness approach by only a second order term

which can be taken as arbitrarily small for small increments, provided the loading is

proportional. Hence, the tangent stiffness approach is the logical analog of the

secant stiffness method for incremental matrix plasticity.

A subtle difference, however, is introduced if the assumption is made in the

tangent stiffness method that the stress-strain relationship of the comparison matrix

material is given by

= At (D-7)

such that CijuTO = CijT is assumed. By differencing the results of parallel solutions
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from the current state employing CijklTo and CijjT, respectively, in ()7), it can be

shown that the error, AE, of the tangent stiffness approach with assumption (D-7)

relative to successive application of the secant stiffness approach is given by

,&E.. -c;,)8(c a; a ,',)
AR = - C)o)I(D-8)

+ I8cJ f(E4J-4)

The notation O[*] denotes that the error is "on the order of" the quantity enclosed
in the brackets. Clearly, the error is second order provided that either Cole a Ciu T,

which is highly improbable, or that CijkT C ij TO, which is perhaps obvious. Hence,

the assumption CifuT, = Cij T in the tangent stiffness approach will lead to first order

error in representing the secant stiffness results unless

- T T-I To 1(-

is of second order.

There are several important regimes where (D-9) is satisfied, including elastic

behavior of both phases and low volume fraction of reinforcement or phase property

mismatch such that the matrix stress differs little from the average composite stress.

Perhaps the most prevalent and important case is where the matrix work hardening

beh3vior is slight which is common for ductile matrix materials. In this case, the

variation of the magnitude of CijuT is small acro..s a wide range of matrix plastic

strain.
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It must be emphasized that in a fully incremental approach, the matrix

behavior is permitted to be path history dependent, unlike in the secant stiffness

approach. Precise assignment of CijT* is therefore an impossible task in the general

case. This is the basis for introducing the parameter B in the tangent stiffness

approach, e.g. equation (3-14).

S For situations where the constraint of the fibers on the matrix is high enough

in the plastic regime to result in aQ'° > > jaij=i, B is introduced to effectively force

0the tangent stiffness toward values less than the actual matrix plastic stiffness, even

in the transient yielding regime. This effect is perhaps most relevant in off-axis and

shear loadings since matrix plasticity has little influence on behavior for loading

* nearly aligned with the fiber direction.

In summary, it appears that the tangent stiffness model in its general form is

a quite simple, versatile and accurate approach for incremental elastic-plastic

composite deformation. It requires no iteration at each loading increment and

requires only constituent properties for user input.

0

0
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APPENDIX E

CONSTITUENT PROPERTIES

E. Introduction

We investigated the inelastic behavior of two composite systems. The boron-

aluminum system is a unidirectional, continuous fiber-reinforced composite for which

the fibers are boron and the matrix is aluminum. The silica-epoxy system is a

spherical particle-reinforced composite where the spherical particles are made of

silica and the matrix is an epoxy resin. Listed below are the elastic properties of

these constituent materials which were used in our investigation.

E.2 Constituent Properties of the Boron-Aluminum System

The boron fibers are considered elastic while the aluminum matrix is elastic-

plastic in the B/Al system. Both the aluminum matrix and boron fibers were assumed

isotropic. Their respective elastic properties are shown below.



EA GA VA Er GT

(106psi) (106psi) (106psi) (106psi)
[GPa] [GPa] [GPa] [GPa]

6061 Al 10.5 3.95 0.33 10.5 3.95
[72.5] [27.2] [72.5] [27.21

Boron 58.0 24.2 0.20 58.0 24.2
[400.0] [166.8] [400.0] [166.8]

where the subscript A corresponds to the 33 (fiber) or the "aligned" direction and

the subscript T corresponds to the 12 or the "transverse" plane. E, G, and v are the

Young's modulus, shear modulus, and elastic Poisson's ratios, respectively. These

properties were obtained from Dvorak and Bahei-EI-Din (1987). The material

properties used to characterize the flow of the matrix are listed in Appendix B.

E.3 Constituent Properties of the Silica-Epoxy System

In the silica-epoxy system, the silica is elastic and the epoxy is elastic-plastic.

Both phases are assumed to be isotropic. From Weng (1988), the elastic properties

are as follows:
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E v

(1O6pSi)
[GPaj

Silica 10.6 0.18
[73.11

-Epoxy 0.458 0.35
[3.16]

The material properties used to characterize the flow of the matrix are listed in

Appendix B.
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APPENDIX F

ANISOTROPIC CONSTRAINT HARDENING
AND THE X FUNCTION

F.1 Introduction

In this thesis, we conducted a theoretical analysis of the inelastic behavior of

metal-matrix composites reinforced with aligned, continuous fibers and attempted to

model the experimental response of the Boron-Aluminum system. Due to the

anisotropy associated with the aligned nature of the reinforcement and the high

transverse shear stiffness of the boron fiber, constraint hardening is highly anisotropic

in the boron-aluminum composite system.

In our tangent stiffness model (§ 3.1), we observed a hardening response in

the plastic regime for off-axis loading because we did not take this constraint

hardening phenomenon into consideration. Further investigation revealed that relief

of constraint hardening in this composite system was due to rotation of the matrix

plastic strain rate vector away from the fiber direction towards the transverse

direction (which is the direction of least constraint). We incorporated this mechanism

for constraint relief into our model via the X function. With this X function we

computed an effective fiber stiffness which ensured a continuous transition to matrix-

dominated behavior as is observed in the plastic regime for the boron-aluminum



composite system.

The purpose of this appendix is to explain this phenomenon of constraint

hardening as it relates to composites reinforced by aligned, continuous fibers and

provide a justification for the form of our proposed X function. Furthermore, we will

discuss how it might apply to different types of composite systems.

F.2 Anisotropic Constraint Hardening

To understand constraint hardening, let us consider an element of matrix

material which is bounded on two sides by fibers (see Figure F-i). For an applied

stress in the X3-direction, the matrix material cannot contract laterally in the X2-

direction due to the high transverse shear stiffness of the boron fibers. This lateral

constraint results in a stiffer response for loads applied in the fiber (X3) direction.

However, when a stress is applied in the transverse (X2) direction, the matrix deforms

"naturally" or in a matrix-dominated mode since there is no constraining effect on the

top and bottom surfaces of the element. We can see that the level of constraint

varies considerably betwee +le fiber and transverse directions. Therefore, we say

that the constraint hardening is anisotropic. It is important to realize that the fiber

direction is the direction of greatest constraint while the transverse direction is the

direction of least constraint.
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F.3 Relief Mechanism for Anisotropic Constraint

It has been experimentally observed for off-axis loadings that boron-aluminum

exhibits a transition to the so-called "matrix-dominated mode" of deformation in the

plastic regime. Therefore, it is evident that there is a relief of constraint hardening

effects associated with the presence of the stiff boron fibers. We must identify the

mechanism responsible for this relief of constraint in order to successfully model the

experimental behavior.

Dvorak and Bahei-El-Din (1988) observed that even for proportionally applied

off-axis loadings there is nonproportionality of the plastic strains in the matrix. For

an off-axis loading, the plastic strain rate vector, i m, is initially collinear with the

matrix stress rate (see Figure F-2). However, as plastic flow develops, i1 Pm rotates

away from the fiber direction towards the direction of least constraint. This rotation

of iif m accounts for the observed nonproportionality of the plastic matrix strains. At

this point, there is sufficient rationale to conclude that the rotation of iipm is

responsible for the observed relief of constraint hardening. To confirm this rationale,

we analyzed the rotation of the matrix plastic strain rate vector, the results of which

were presented in § 4.5 of the main thesis. We will restate those results here.

We utilized the results from our tangent stiffness model to analyze the rotation

of ijf. It is important to remember that the tangent stiffness model accurately

approximated the response of the composite in the initial yielding regime. Therefore,

it is accurate up to approximately 0.1 or 0.2 % strain. Hence, we are justified in
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using the results of this model in our analysis of iijPM.

Referring to Figure 8, we see that in the 0* orientation the plastic strains

remain proportional as indicated by the linearity of the plot of e33
pm versus E2P .

However, in the off-axis orientations, there is curvature of the plot indicating

increasing. dominance of e22PM and rotation of ijf m away from the fiber direction

* towards the direction of least constraint, the transverse direction. This analysis

confirms our hypothesis that rotation of iJPm is the mechanism responsible for the

relief of constraint hardening and the transition to a matrix-dominated response in

the boron-aluminum composite system.

F.4 Analyzing Constraint Hardening Utilizing Wang's Representation Theorem

At this point, we have established that there is decreasing constraint hardening

in the boron-aluminum composite associated with the development of plastic flow in

the matrix due to rotation of ijpro . If we define *ij as

-j t(F-i)

then *ij is clearly the rate of change of the hydrostatic constraint stress, akk', with

plastic matrix strain. In general, we may represent #ij as an isotropic tensor function

of the form

*V= 'I'3(4k;P1X) (2
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The unit vector e3 represents constraint hardening due to the anisotropy in the

composite due to fiber reinforcement while akjm represents constraint hardening in

the matrix due to the impedance of dislocation motion by the presence of the

reinforcement. The semicolon indicates implicit dependence of *ij on the functions

8 and Z which are our proposed methods of representing constraint hardening effects

in the composite. Using Wang's representation theorem, *ij may be expressed in

terms of the irreducible functionality basis of the pair (e.3,a,') (Wang, 1970) as

follows:

Si (PIl@Mkb&IX)8Q + (2 CkMfX1& (F-3)
9 43(C aft Us i

Here, r, is expressed as the sum of four isotropic tensor functions whose arguments

are as shown above. The first term in the expression, 'pl, is included based on the

formality of the representation but will drop out since the first invariant of ei p' is

equal to zero. The second term, q, represents constraint hardening in fiber-

reinforced composites. The third and fourth terms, q3 and (P4, represent constraint

hardening in particle-reinforced composites. Since the second term and the third and

fourth terms are representative of two completely different classes of composite

materials, cross terms in the representation have been omitted. Also, joint invariants

of a m' have been omitted as second order.

We will now take a closer look at constraint hardening in fiber-reinforced

F-114



composites using Wang's representation theorem. For fiber-reinforced composites,

we may in general express *ij using the second term in (F-3) as

=-3,d ;P,X) • (F-4)

From § 3.2 of the main thesis, we recall that constraint hardening due to ak,' is

isotropic and that constraint hardening associated with 63 is anisotropic. We may

think of B as the function utilized to represent isotropic constraint hardening while

X is the function utilized to represent anisotropic constraint hardening. If we refer

to Figure F-3, we can see that the anisotropic constraint hardening due to B and x

is dominant over isotropic constraint hardening for fiber-reinforced composites. This

graphical illustration in combination with our analysis in § 3.2 leads us to conclude

that isotropic constraint hardening is of second order importance in the fiber-

reinforced composite.

F.5 Development of the X Function

We have shown that relief of constraint in the fiber-reinforced composite is

associated with the rotation of iif' of away from the fiber direction during off-axis

loadings. Furthermore, we have shown that constraint hardening is an anisotropic

phenomenon in this class of composites.

From § 3.2, the hydrostatic constraint stress rate is

= jiP'In 3 -=i (F-5)
Fi 15
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where n33 is the component of n,, the unit normal vector in the direction of ifl, in

the fiber direction, e3 and X is an isotropic scaler function of 63 and akm. As plastic

flow in the matrix develops and iijPm rotates away from e3, n33 decreases in

magnitude. We also know from experimental evidence that the boron-aluminum

system demonstrates a rapid transition to matrix-dominated behavior (see

experimental data plotted in Figure 10, for example).

Utilizing these facts, we are able to model constraint relief by effectively

reducing the stiffness of the fiber utilizing the X function as follows:

LA4 = Tc I T (F-6)

where X takes on the form

X W _ I n,, II- (F-7)I)
~=cx44(1~?3 ( 1 aC (

The idea here is to facilitate the transition to matrix-dominated behavior (the tangent

stiffness, CijJT) by effectively reducing the fiber stiffness from Cijk " in the elastic

regime to CijklT in the inelastic regime.

Some explanation of the terms in (F.7) is required. The asymptotic plastic

hardening modulus, ho, is indicative of the asymptotic plastic behavior of the matrix

material. Therefore, the ratio hq/h is representative of the plastic strain state of the

matrix. In the elastic regime, where h -. c, h0/h - 0 and X -" 1. However, as plastic

flow develops, h/h -- 1 and contributes to the overall value within the brackets.

F-116



The component of nij in the e3 direction, n3, is indicative of the rotation of

ifpm. As plastic flow develops and constraint is relieved, n33 - 0. As indicated by the

experimental data, matrix-dominated behavior is realized earlier on for more off-axis

orientations ( e.g. 450) than for off-axis orientations closer to the fiber direction (e.g.

100). This- is because n33 is initially greater for the 100 orientation say than the 450

orientation. Therefore, it takes longer for matrix-dominated behavior to develop in

the 100 orientation.

As stated above, the boron-aluminum system exhibits a rapid transition to

matrix-dominated behavior. This may not be the case for other composite systems.

The exponent N allows us to dictate the rate of transition to matrix-dominated

behavior. In general, the higher the transverse shear stiffness of the fiber, the faster

the transition. For the boron-aluminum system, we fitted to the 150 orientation using

N=4.

The aspect ratio a/c is included to take into account the nature of the

reinforcement. For aligned, continuous fibers, a/c = 0. For spherical, particle

reinforcement, a/c = 1.

Taking the above factors into consideration, we can see that the X function

generally behaves as shown in Figure F-4. When there is no plastic flow, X = 1 and

Ctijk = Cijk for all off-axis orientations. As plastic flow develops, X exponentially

decays to zero at a rate which is dependent on the loading orientation and the

transverse shear stiffness of the fiber. Figure F-4 is intended to give a general
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representation of this behavior and is not indicative of a particular system.

F.6 Conclusion

In summary, the x function is a mathematical means of modeling the relief of

amsotropic constraint hardening in fiber-reinforced composites. It is theoretically

based on the fact that constraint is relieved by rotation of [iiP' away from e3 during

the development of plastic flow of the matrix and that matrix-dominated behavior is

exhibited in the plastic regime.

Its development was based solely on our attempts to model the inelastic

behavior of boron-aluminum. Applications to other systems such as graphite-

aluminum have as yet to be investigated. Isotropic constraint hardening in the boron-

aluminum composite was neglected as second order because of the dominance of

anisotropic constraint due to the high shear transverse stiffness and anisotropy of the

reinforcement. Therefore, the B parameter and the concept of the comparison

matrix material were not incorporated into our attempts to model boron-aluminum.

We recognize that for other systems, this may indeed not be the case. A combination

of B and X may be required to successfully model the inelastic behavior of systems

with more compliant reinforcement.
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